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Abstract

Three glycopeptides Ac-Ala-Ser[b-Gal(OAc)4]-Phe-NH2, Ac-Ala-Na-Me-Ser[b-Gal(OAc)4]-Phe-NH2

and Ac-Ala-Ser[b-Gal(OAc)4]-N
a-Me-Phe-NH2 have been prepared and treated with base in order to

remove the O-acetyl protective groups. The glycopeptide which carried the N-methyl group on the glyco-
sylated serine, was substantially more susceptible to b-elimination than the two others. This reveals that
formation of an aza-enolate from the amide bond to a glycosylated serine provides protection against
b-elimination under basic conditions. # 2000 Elsevier Science Ltd. All rights reserved.

Removal of O-acyl protective groups from the carbohydrate moiety is often the ®nal step in
synthesis of a glycopeptide. This is usually achieved using a moderately strong base such as
sodium methoxide, ammonia1 or hydrazine hydrate2 in methanolic solutions. Since the a-protons
of the amino acid residues are acidic, treatment with base is accompanied by risks of epimerization
of a-stereocenters, or b-elimination if the carbohydrate is attached to serine or threonine.1,3ÿ10

Removal of acetyl groups is usually facile, but the increased concentration of base required for
removal of O-benzoyl groups may cause b-elimination and slight epimerization.1,7ÿ10 It has been
suggested that formation of aza-enolates by removal of the acidic amide protons protects the
glycopeptide from these side-reactions.9,11 To test this hypothesis we have synthesized three
glycotripeptides, two of which are Na-methylated either on the galactosylated serine or on the
C-terminal phenylalanine, in order to prevent aza-enolate formation at these positions. The rate
of b-elimination upon de-O-acetylation of the di�erent glycopeptides was then investigated.
Synthesis of the three glycopeptides required preparation of building blocks 3 and 7 in which a

tetra-O-acetylated galactose moiety is b-linked to serine and N-methylated serine, respectively
(Scheme 1). Building block 3was synthesized in 55% yield from pentaacetate 1 and Fmoc-Ser-OPfp
(2), using boron tri¯uoride etherate as promoter.12 N-Methylated serine 4 was Fmoc-protected
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and then converted into the penta¯uorophenyl (Pfp)-ester giving derivative 6. This was galacto-
sylated using the same conditions as for 3 to give the building block 713 in 71% yield. The higher
yield in the glycosylation of N-methylated serine 6, as compared to 2, is in agreement with pre-
vious observations made by Polt and co-workers.14

Building blocks 3 and 7 were then used for assembly of glycopeptides 8±1015 on a TentaGel
S-NH2

TM resin functionalized with the Rink linker.16,17 The three glycopeptides were cleaved
from the resin with TFA:water (95:5) and then puri®ed by ¯ash chromatography and reversed-
phase HPLC-chromatography. Treatment of the glycopeptides with 10 mM methanolic sodium
methoxide resulted in rapid (<30 min) removal of the O-acetyl groups to give 11±13 (Scheme
2).18 As revealed by reversed-phase HPLC prolonged exposure to base (0.5±5 h) led to b-elim-
ination of 11±13, giving 14±1619 at di�erent rates. In order that to avoid di�erences in the
experimental conditions a�ected the rates of b-elimination, the non-N-methylated 8 was used as
an internal control which, in two separate experiments, was treated with sodium methoxide in the
same ¯ask as 9 and 10. After deacetylation of 8 and 10 the resulting 11 and 13 both underwent
b-elimination slowly and at equal rates. This established that formation of an aza-enolate at the

Scheme 1. Reagents and conditions: (i) BF3
.Et2O, CH2Cl2, rt; (ii) Fmoc-Suc, Et3N, H2O:MeCN (1:2), rt; (iii) PfpOH,

DIC, EtOAc, 0�C!rt

Scheme 2.
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serine-phenylalanine amide bond did not provide any signi®cant protection against b-elimination.
In contrast, glycopeptide 12, in which the glycosylated serine is N-methylated, underwent
b-elimination much more rapidly than 11. As shown in Fig. 1, only a small amount of non-
methylated 11 had been converted to dehydroalanine 14 when �50% of 12 had been transformed
to 15. In fact, it was not possible to prepare N-methylated 12 from 9 without formation of 15 by
b-elimination. This is in contrast to glycopeptides 8 and 10, which could be deacetylated without
any detectable b-elimination. Crude 12 could, however, be puri®ed by reversed-phase HPLC, and
NMR spectroscopy of the resulting pure 12 did not reveal any signs of epimerization of
the a-stereocenters.

The possibility thatN-methylation of the central serine residue increased the rate of b-elimination
of 12 by in¯uencing the conformation around the serine Ca±Cb bond was ruled out by inspection
of the coupling constants between the H-a and H-b protons. Glycopeptide 12 populates two
conformations for the alanine-serine amide bond. One rotamer displayed coupling constants of
6.8 Hz between the Sera- and the Serb-protons, thus indicating free rotation around the Ca±Cb

bond just as for non-methylated 11. For the other rotamer the values of the 3Ja,b coupling constants
were found to be 4.8 and 9.4 Hz, respectively. This reveals a predominant population of a
conformation in which SerOb andHa adopt a gauche orientation, i.e. one of the two conformations
which do not allow b-elimination to occur.

Figure 1. HPLC-chromatogram of the simultaneous de-O-acetylation of glycopeptides 8 and 9 which leads to forma-
tion of 11 and 12, as well as their respective b-eliminated products 14 and 15 (conditions: Kromasil C-8 column. Linear

gradient of 0±80% B in A over 60 min. A=0.1% aqueous TFA, B=0.1% TFA in MeCN. Flowrate 1.5 ml/min)
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In conclusion, we have shown thatNa-methylation of a glycosylated serine results in a substantial
increase in the rate of b-elimination on base-catalyzed removal of O-acyl protective groups from
glycopeptides. We interpret this result as being due to the fact that a protective aza-enolate
cannot be formed adjacent to the carbohydrate moiety. Since b-elimination is often encountered
on removal of benzoyl protective groups from O-linked glycopeptides,1,7ÿ10 and cannot be
avoided if the carbohydrate is linked to a N-methylated serine, novel protective groups should
®nd use in the synthesis of glycopeptides. Investigations of such protective groups are now in
progress in our laboratory.
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Me); �Apa 5.76 (s, 1H, H-b), 5.40 (s, 1H, H-a); Phe 4.63 (m, 1H, H-b), 3.27 (dd, 1H, J=5.0, 14.0 Hz, H-b), 2.98
(dd, 1H, J=10.0, 14.0 Hz, H-b); FABMS: (M+H)+ 347 calcd, 347 obsd. Peptide 15: 1HNMR (400MHz,MeOH-d4), �
(ppm): Ala 4.41 (m, 1H, H-a), 1.25 (d, 3H, Me); �Apa 6.19 (s, 1H, H-b), 5.72 (s, 1H, H-b); Phe 4.61 (m, 1H, H-a),
3.3±3.4 (m, 1H, H-b), 3.05 (br t, 1H, J=12.4 Hz, H-b).

4439


