

Tetrahedron Letters 41 (2000) 4435-4439

TETRAHEDRON LETTERS

Deacetylation of N^{α} -methylated glycopeptides reveals that aza-enolates provide protection against β -elimination of carbohydrates O-linked to serine

Petter Sjölin and Jan Kihlberg*

Department of Chemistry, Organic Chemistry, Umeå University, SE-901 87 Umeå, Sweden

Received 25 February 2000; accepted 10 April 2000

Abstract

Three glycopeptides Ac-Ala-Ser[β -Gal(OAc)₄]-Phe-NH₂, Ac-Ala-N^o-Me-Ser[β -Gal(OAc)₄]-Phe-NH₂ and Ac-Ala-Ser[B-Gal(OAc)₄]- N^{α} -Me-Phe-NH₂ have been prepared and treated with base in order to remove the O-acetyl protective groups. The glycopeptide which carried the N-methyl group on the glycosylated serine, was substantially more susceptible to β -elimination than the two others. This reveals that formation of an aza-enolate from the amide bond to a glycosylated serine provides protection against b-elimination under basic conditions. # 2000 Elsevier Science Ltd. All rights reserved.

Removal of O-acyl protective groups from the carbohydrate moiety is often the final step in synthesis of a glycopeptide. This is usually achieved using a moderately strong base such as sodium methoxide, ammonia¹ or hydrazine hydrate² in methanolic solutions. Since the α -protons of the amino acid residues are acidic, treatment with base is accompanied by risks of epimerization of α -stereocenters, or β -elimination if the carbohydrate is attached to serine or threonine.^{1,3–10} Removal of acetyl groups is usually facile, but the increased concentration of base required for removal of O-benzoyl groups may cause β -elimination and slight epimerization.^{1,7–10} It has been suggested that formation of aza-enolates by removal of the acidic amide protons protects the glycopeptide from these side-reactions.^{9,11} To test this hypothesis we have synthesized three glycotripeptides, two of which are N^{α} -methylated either on the galactosylated serine or on the C-terminal phenylalanine, in order to prevent aza-enolate formation at these positions. The rate of β -elimination upon de-O-acetylation of the different glycopeptides was then investigated.

Synthesis of the three glycopeptides required preparation of building blocks 3 and 7 in which a tetra-O-acetylated galactose moiety is β -linked to serine and N-methylated serine, respectively (Scheme 1). Building block 3 was synthesized in 55% yield from pentaacetate 1 and Fmoc-Ser-OPfp (2), using boron trifluoride etherate as promoter.¹² N-Methylated serine 4 was Fmoc-protected

^{*} Corresponding author.

and then converted into the penta $fluorophenyl$ (Pfp)-ester giving derivative 6. This was galactosylated using the same conditions as for 3 to give the building block 7^{13} in 71% yield. The higher yield in the glycosylation of N-methylated serine 6, as compared to 2, is in agreement with previous observations made by Polt and co-workers.14

Scheme 1. Reagents and conditions: (i) $BF_3 \cdot Et_2O$, CH_2Cl_2 , rt; (ii) Fmoc-Suc, Et_3N , H_2O :MeCN (1:2), rt; (iii) PfpOH, DIC, EtOAc, $0^{\circ}C \rightarrow rt$

Building blocks 3 and 7 were then used for assembly of glycopeptides $8-10^{15}$ on a TentaGel $S-NH_2$ TM resin functionalized with the Rink linker.^{16,17} The three glycopeptides were cleaved from the resin with TFA:water $(95:5)$ and then purified by flash chromatography and reversedphase HPLC-chromatography. Treatment of the glycopeptides with 10 mM methanolic sodium methoxide resulted in rapid (\leq 30 min) removal of the O-acetyl groups to give 11–13 (Scheme 2).¹⁸ As revealed by reversed-phase HPLC prolonged exposure to base $(0.5-5 \text{ h})$ led to β -elimination of $11-13$, giving $14-16^{19}$ at different rates. In order that to avoid differences in the experimental conditions affected the rates of β -elimination, the non-N-methylated 8 was used as an internal control which, in two separate experiments, was treated with sodium methoxide in the same flask as 9 and 10. After deacetylation of 8 and 10 the resulting 11 and 13 both underwent b-elimination slowly and at equal rates. This established that formation of an aza-enolate at the

Scheme 2.

serine-phenylalanine amide bond did not provide any significant protection against β -elimination. In contrast, glycopeptide 12, in which the glycosylated serine is N-methylated, underwent β -elimination much more rapidly than 11. As shown in Fig. 1, only a small amount of nonmethylated 11 had been converted to dehydroalanine 14 when \sim 50% of 12 had been transformed to 15. In fact, it was not possible to prepare N-methylated 12 from 9 without formation of 15 by β -elimination. This is in contrast to glycopeptides 8 and 10, which could be deacetylated without any detectable β -elimination. Crude 12 could, however, be purified by reversed-phase HPLC, and NMR spectroscopy of the resulting pure 12 did not reveal any signs of epimerization of the a-stereocenters.

Figure 1. HPLC-chromatogram of the simultaneous de-O-acetylation of glycopeptides 8 and 9 which leads to formation of 11 and 12, as well as their respective β-eliminated products 14 and 15 (conditions: Kromasil C-8 column. Linear gradient of $0-80\%$ B in A over 60 min. A = 0.1% aqueous TFA, B = 0.1% TFA in MeCN. Flowrate 1.5 ml/min)

The possibility that N-methylation of the central serine residue increased the rate of β -elimination of 12 by influencing the conformation around the serine $C_{\alpha}-C_{\beta}$ bond was ruled out by inspection of the coupling constants between the H- α and H- β protons. Glycopeptide 12 populates two conformations for the alanine-serine amide bond. One rotamer displayed coupling constants of 6.8 Hz between the Ser α - and the Ser β -protons, thus indicating free rotation around the $C_{\alpha}-C_{\beta}$ bond just as for non-methylated 11. For the other rotamer the values of the $^3J_{\alpha,\beta}$ coupling constants were found to be 4.8 and 9.4 Hz, respectively. This reveals a predominant population of a conformation in which Ser $O\beta$ and $H\alpha$ adopt a *gauche* orientation, i.e. one of the two conformations which do not allow β -elimination to occur.

In conclusion, we have shown that N^{α} -methylation of a glycosylated serine results in a substantial increase in the rate of β -elimination on base-catalyzed removal of O-acyl protective groups from glycopeptides. We interpret this result as being due to the fact that a protective aza-enolate cannot be formed adjacent to the carbohydrate moiety. Since β -elimination is often encountered on removal of benzoyl protective groups from O-linked glycopeptides, $1,7-10$ and cannot be avoided if the carbohydrate is linked to a N-methylated serine, novel protective groups should find use in the synthesis of glycopeptides. Investigations of such protective groups are now in progress in our laboratory.

Acknowledgements

This work was funded by grants from the Swedish Natural Science Research Council and the Swedish Research Council for Engineering Sciences.

References

- 1. Paulsen, H.; Schultz, M.; Klamann, J.-D.; Waller, B.; Paal, M. Liebigs Ann. Chem. 1985, 2028-2048.
- 2. Schultheiss-Reimann, P.; Kunz, H. Angew. Chem., Suppl. 1983, 39-46.
- 3. Kunz, H. Angew. Chem., Int. Ed. Engl. 1987, 26, 294-308.
- 4. Kunz, H.; Brill, W. K.-D. Trends Glycosci. Glycotechnol. 1992, 4, 71-82.
- 5. Hoogerhout, P.; Guis, C. P.; Erkelens, C.; Bloemhoff, W.; Kerling, K. E. T.; van Boom, J. H. *Recl. Trav. Chim.* Pays-Bas 1985, 104, 54-59.
- 6. Andrews, D. M.; Seale, P. W. Int. J. Peptide Protein Res. 1993, 42, 165-170.
- 7. Erbing, B.; Lindberg, B.; Norberg, T. Acta Chem. Scand. 1978, B32, 308-310.
- 8. Reimer, K. B.; Meldal, M.; Kusumoto, S.; Fukase, K.; Bock, K. J. Chem. Soc., Perkin Trans. 1 1993, 925–932.
- 9. Sjölin, P.; Elofsson, M.; Kihlberg, J. J. Org. Chem. 1996, 61, 560–565.
- 10. SjoÈlin, P.; George, S. K.; Bergquist, K. E.; Roy, S.; Svensson, A.; Kihlberg, J. J. Chem. Soc., Perkin Trans. 1 1999, 1731±1742.
- 11. Seebach, D. Aldrichim. Acta 1992, 25, 59-66.
- 12. Kihlberg, J.; Åhman, J.; Walse, B.; Drakenberg, T.; Nilsson, A.; Söderberg-Ahlm, C.; Bengtsson, B.; Olsson, H. J. Med. Chem. 1995, 38, 161-169.
- 13. Compound 7: ¹H NMR (400 MHz, CDCl₃), rotamers (~2:1), δ (ppm): 5.37–5.42 (m, 2H, H-4,4'), 5.21 (dd, 1H, J=7.9, 10.5 Hz, H-2⁰), 5.14 (dd, 1H, J=8.0, 10.5 Hz, H-2), 4.58 (d, 1H, J=7.9 Hz, H-1), 4.27 (d, 1H, J=8.0 Hz, H-1'), 3.05 (s, 1H, Me), 2.99 (s, 1H, Me'); FABMS: (M+Na)⁺ 860 calcd, 860 obsd.
- 14. Szabo, L.; Li, Y. S.; Polt, R. Tetrahedron Lett. 1991, 32, 585-588.
- 15. Glycopeptide 8: yield 97%; ¹H NMR (400 MHz, Acetone- d_6), δ (ppm): Ala 4.21 (m, 1H, H- α), 1.32 (d, 3H, $J=7.2$ Hz, Me); Ser 4.36 (m, 1H, H-α), 3.84 (dd, 1H, J=7.3, 10.7 Hz, H-β), 3.76 (dd, 1H, J=4.8, 10.7 Hz, H-β'); Phe 4.51 (m, 1H, H-α), 3.26 (dd, 1H, J=4.4, 14.0 Hz, H-β), 2.99 (dd, 1H, J=9.8, 13.9 Hz, H-β'); Gal 4.74 (d, 1H, J=7.6 Hz, H-1); FABMS: $(M+H)^+$ 695 calcd, 695 obsd. Glycopeptide 9: yield 86%; ¹H NMR (400 MHz, Acetone- d_6), major rotamer, δ (ppm): Ala 4.82 (m, 1H, H- α), 1.31 (d, 3H, J=6.9 Hz, Me); Ser 5.16 (dd, 1H, J=4.7, 9.4 Hz, H- α), 3.9–4.0 (m, 2H, H- β , β'); Phe 4.54 (ddd, 1H, J=3.8, 8.7, 11.2 Hz, H- α), 3.28 (dd, 1H, J=3.7, 14.0 Hz, H- β), 2.92 (dd, 1H, J = 11.3, 13.9 Hz, H-β'); Gal 4.75 (d, 1H, J = 7.9 Hz, H-1); minor rotamer, δ (ppm): Ala 1.19 (d, 3H, $J=6.8$ Hz, Me); Phe 4.62 (m, 1H, H-a), 3.20 (dd, 1H, $J=5.1$, 14.1 Hz, H-β), 2.95 (m, 1H, H-β'); Gal 4.72 (d, 1H, J=7.6 Hz, H-1); FABMS: (M+H)⁺ 709 calcd, 709 obsd. Glycopeptide 10: yield 39%; ¹ H NMR (400 MHz, Acetone-d₆), rotamers (~1:1), δ (ppm): Ala 4.38 (t, 1H, J=7.2 Hz, H- α), 4.31 (t, 1H, J=7.2 Hz, H- α); Ser 4.5–4.6 $(m, 1H, H-\alpha)$; Phe 5.20 (dd, 1H, $J=6.5$, 9.0 Hz, H- α); Gal 4.80 (d, 1H, $J=7.9$ Hz, H-1), 4.42 (d, 1H, $J=7.9$ Hz, H-1); FABMS: (M+H)⁺ 709 calcd, 709 obsd.
- 16. Rink, H. Tetrahedron Lett. 1987, 28, 3787-3790.
- 17. Bernatowicz, M. S.; Daniels, S. B.; Köster, H. Tetrahedron Lett. 1989, 30, 4645-4648.
- 18. Glycopeptide 11: ¹H NMR (400 MHz, MeOH-d₄), δ (ppm): Ala 4.25–4.35 (m, 1H, H-α), 1.28 (d, 3H, J = 7.2 Hz, Me); Ser 4.54 (t, 1H, $J = 5.4$ Hz, H- α), 4.09 (dd, 1H, $J = 5.1$, 10.4 Hz, H- β), 3.7–3.8 (m, 1H, H- β); Phe 4.57 (m, 1H, H-a), 3.21 (dd, 1H, J=4.9, 14.1 Hz, H-b), 2.97 (dd, 1H, J=9.1, 14.0 Hz, H-b); Gal 4.27 (d, 1H, J=7.2 Hz, H-1); FABMS: $(M+H)^+$ 527 calcd, 527 obsd. Glycopeptide 12: ¹H NMR (400 MHz, MeOH-d₄), rotamers (~1:1), δ (ppm): Ala 4.8±4.9 (m, 1H, H-a), 4.70 (q, 1H, J=7.0 Hz, H-a), 1.36 (d, 3H, J=7.2 Hz, Me), 1.23 (d, 3H, J=7.0 Hz, Me); Ser 5.23 (dd, 1H, J=4.8, 9.3 Hz, H- α), 5.14 (t, 1H, J=6.7 Hz, H- α), 3.9–4.1 (m, 4H, H-β); Phe 4.50–4.65 (m, 2H, H-a), 3.2±3.3 (m, 2H, H-b), 2.9±3.0 (m, 2H, H-b); Gal 4.2±4.3 (m, 2H, H-1); FABMS: (M+Na)⁺ 563 calcd, 563 obsd. Glycopeptide 13: ¹H NMR (400 MHz, MeOH-d₄), rotamers (~3:2), δ (ppm): Ala 4.34 (q, 1H, $J=7.1$ Hz, H- α), 4.26 (q, 1H, $J=7.2$ Hz, H- α), 1.29 (d, 3H, $J=7.2$ Hz, Me), 1.22 (d, 3H, $J=7.2$ Hz, Me); Ser 5.04 (t, 1H, $J=6.3$ Hz, H- α), 4.63 (dd, 1H, $J=4.8$, 9.3 Hz, H- α), 3.98 (dd, 1H, $J=5.9$, 10.1 Hz, H-B), 3.75–3.85 (m, 1H, H-B), 3.3–3.4 (m, 1H, H- β), 2.30 (dd, 1H, $J=4.0$, 10.2 Hz, H- β); Phe 5.25 (dd, 1H, $J=5.6$, 10.3 Hz, H- α), 5.06 (dd, 1H, $J=4.0, 10.0$ Hz, H- α), 3.25–3.40 (m, 2H, H- β), 2.95–3.05 (m, 2H, H- β); Gal 4.24 (d, 1H, $J=7.5$ Hz, H-1), 3.92 (d, 1H, J=7.3 Hz, H-1); FABMS: (M+Na)⁺ 563 calcd, 563 obsd.
- 19. Peptide 14: ¹H NMR (400 MHz, MeOH-d₄), δ (ppm): Ala 4.30 (q, 1H, J = 7.2 Hz, H-α), 1.34 (d, 3H, J = 7.2 Hz, Me); Apa 5.76 (s, 1H, H-b), 5.40 (s, 1H, H-a); Phe 4.63 (m, 1H, H-b), 3.27 (dd, 1H, J=5.0, 14.0 Hz, H-b), 2.98 (dd, 1H, $J = 10.0$, 14.0 Hz, H- β); FABMS: (M+H)⁺ 347 calcd, 347 obsd. Peptide 15: ¹H NMR (400 MHz, MeOH- d_4), δ (ppm): Ala 4.41 (m, 1H, H-a), 1.25 (d, 3H, Me); Apa 6.19 (s, 1H, H-b), 5.72 (s, 1H, H-b); Phe 4.61 (m, 1H, H-a), 3.3–3.4 (m, 1H, H- β), 3.05 (br t, 1H, $J=12.4$ Hz, H- β).