

Tetrahedron Letters 41 (2000) 4435-4439

TETRAHEDRON LETTERS

## Deacetylation of $N^{\alpha}$ -methylated glycopeptides reveals that aza-enolates provide protection against $\beta$ -elimination of carbohydrates *O*-linked to serine

Petter Sjölin and Jan Kihlberg\*

Department of Chemistry, Organic Chemistry, Umeå University, SE-901 87 Umeå, Sweden

Received 25 February 2000; accepted 10 April 2000

## Abstract

Three glycopeptides Ac-Ala-Ser[ $\beta$ -Gal(OAc)<sub>4</sub>]-Phe-NH<sub>2</sub>, Ac-Ala- $N^{\alpha}$ -Me-Ser[ $\beta$ -Gal(OAc)<sub>4</sub>]-Phe-NH<sub>2</sub> and Ac-Ala-Ser[ $\beta$ -Gal(OAc)<sub>4</sub>]- $N^{\alpha}$ -Me-Phe-NH<sub>2</sub> have been prepared and treated with base in order to remove the *O*-acetyl protective groups. The glycopeptide which carried the *N*-methyl group on the glycosylated serine, was substantially more susceptible to  $\beta$ -elimination than the two others. This reveals that formation of an aza-enolate from the amide bond to a glycosylated serine provides protection against  $\beta$ -elimination under basic conditions. © 2000 Elsevier Science Ltd. All rights reserved.

Removal of *O*-acyl protective groups from the carbohydrate moiety is often the final step in synthesis of a glycopeptide. This is usually achieved using a moderately strong base such as sodium methoxide, ammonia<sup>1</sup> or hydrazine hydrate<sup>2</sup> in methanolic solutions. Since the  $\alpha$ -protons of the amino acid residues are acidic, treatment with base is accompanied by risks of epimerization of  $\alpha$ -stereocenters, or  $\beta$ -elimination if the carbohydrate is attached to serine or threonine.<sup>1,3–10</sup> Removal of acetyl groups is usually facile, but the increased concentration of base required for removal of *O*-benzoyl groups may cause  $\beta$ -elimination and slight epimerization.<sup>1,7–10</sup> It has been suggested that formation of aza-enolates by removal of the acidic amide protons protects the glycopeptide from these side-reactions.<sup>9,11</sup> To test this hypothesis we have synthesized three glycotripeptides, two of which are  $N^{\alpha}$ -methylated either on the galactosylated serine or on the C-terminal phenylalanine, in order to prevent aza-enolate formation at these positions. The rate of  $\beta$ -elimination upon de-*O*-acetylation of the different glycopeptides was then investigated.

Synthesis of the three glycopeptides required preparation of building blocks **3** and **7** in which a tetra-*O*-acetylated galactose moiety is  $\beta$ -linked to serine and *N*-methylated serine, respectively (Scheme 1). Building block **3** was synthesized in 55% yield from pentaacetate **1** and Fmoc-Ser-OPfp (**2**), using boron trifluoride etherate as promoter.<sup>12</sup> *N*-Methylated serine **4** was Fmoc-protected

<sup>\*</sup> Corresponding author.

and then converted into the pentafluorophenyl (Pfp)-ester giving derivative 6. This was galactosylated using the same conditions as for 3 to give the building block  $7^{13}$  in 71% yield. The higher yield in the glycosylation of *N*-methylated serine 6, as compared to 2, is in agreement with previous observations made by Polt and co-workers.<sup>14</sup>



Scheme 1. Reagents and conditions: (i)  $BF_3 \cdot Et_2O$ ,  $CH_2Cl_2$ , rt; (ii) Fmoc-Suc,  $Et_3N$ ,  $H_2O:MeCN$  (1:2), rt; (iii) PfpOH, DIC, EtOAc,  $0^{\circ}C \rightarrow rt$ 

Building blocks 3 and 7 were then used for assembly of glycopeptides 8–10<sup>15</sup> on a TentaGel S-NH<sub>2</sub><sup>TM</sup> resin functionalized with the Rink linker.<sup>16,17</sup> The three glycopeptides were cleaved from the resin with TFA:water (95:5) and then purified by flash chromatography and reversed-phase HPLC-chromatography. Treatment of the glycopeptides with 10 mM methanolic sodium methoxide resulted in rapid (< 30 min) removal of the *O*-acetyl groups to give 11–13 (Scheme 2).<sup>18</sup> As revealed by reversed-phase HPLC prolonged exposure to base (0.5–5 h) led to  $\beta$ -elimination of 11–13, giving 14–16<sup>19</sup> at different rates. In order that to avoid differences in the experimental conditions affected the rates of  $\beta$ -elimination, the non-*N*-methylated 8 was used as an internal control which, in two separate experiments, was treated with sodium methoxide in the same flask as 9 and 10. After deacetylation of 8 and 10 the resulting 11 and 13 both underwent  $\beta$ -elimination slowly and at equal rates. This established that formation of an aza-enolate at the



Scheme 2.

serine-phenylalanine amide bond did not provide any significant protection against  $\beta$ -elimination. In contrast, glycopeptide **12**, in which the glycosylated serine is *N*-methylated, underwent  $\beta$ -elimination much more rapidly than **11**. As shown in Fig. 1, only a small amount of nonmethylated **11** had been converted to dehydroalanine **14** when ~50% of **12** had been transformed to **15**. In fact, it was not possible to prepare *N*-methylated **12** from **9** without formation of **15** by  $\beta$ -elimination. This is in contrast to glycopeptides **8** and **10**, which could be deacetylated without any detectable  $\beta$ -elimination. Crude **12** could, however, be purified by reversed-phase HPLC, and NMR spectroscopy of the resulting pure **12** did not reveal any signs of epimerization of the  $\alpha$ -stereocenters.



Figure 1. HPLC-chromatogram of the simultaneous de-*O*-acetylation of glycopeptides **8** and **9** which leads to formation of **11** and **12**, as well as their respective  $\beta$ -eliminated products **14** and **15** (conditions: Kromasil C-8 column. Linear gradient of 0–80% B in A over 60 min. A = 0.1% aqueous TFA, B = 0.1% TFA in MeCN. Flowrate 1.5 ml/min)

The possibility that *N*-methylation of the central serine residue increased the rate of  $\beta$ -elimination of **12** by influencing the conformation around the serine  $C_{\alpha}-C_{\beta}$  bond was ruled out by inspection of the coupling constants between the H- $\alpha$  and H- $\beta$  protons. Glycopeptide **12** populates two conformations for the alanine-serine amide bond. One rotamer displayed coupling constants of 6.8 Hz between the Ser $\alpha$ - and the Ser $\beta$ -protons, thus indicating free rotation around the  $C_{\alpha}-C_{\beta}$ bond just as for non-methylated **11**. For the other rotamer the values of the  ${}^{3}J_{\alpha,\beta}$  coupling constants were found to be 4.8 and 9.4 Hz, respectively. This reveals a predominant population of a conformation in which Ser  $O\beta$  and  $H\alpha$  adopt a *gauche* orientation, i.e. one of the two conformations which do not allow  $\beta$ -elimination to occur. In conclusion, we have shown that  $N^{\alpha}$ -methylation of a glycosylated serine results in a substantial increase in the rate of  $\beta$ -elimination on base-catalyzed removal of *O*-acyl protective groups from glycopeptides. We interpret this result as being due to the fact that a protective aza-enolate cannot be formed adjacent to the carbohydrate moiety. Since  $\beta$ -elimination is often encountered on removal of benzoyl protective groups from *O*-linked glycopeptides,<sup>1,7-10</sup> and cannot be avoided if the carbohydrate is linked to a *N*-methylated serine, novel protective groups should find use in the synthesis of glycopeptides. Investigations of such protective groups are now in progress in our laboratory.

## Acknowledgements

This work was funded by grants from the Swedish Natural Science Research Council and the Swedish Research Council for Engineering Sciences.

## References

- 1. Paulsen, H.; Schultz, M.; Klamann, J.-D.; Waller, B.; Paal, M. Liebigs Ann. Chem. 1985, 2028–2048.
- 2. Schultheiss-Reimann, P.; Kunz, H. Angew. Chem., Suppl. 1983, 39-46.
- 3. Kunz, H. Angew. Chem., Int. Ed. Engl. 1987, 26, 294-308.
- 4. Kunz, H.; Brill, W. K.-D. Trends Glycosci. Glycotechnol. 1992, 4, 71-82.
- 5. Hoogerhout, P.; Guis, C. P.; Erkelens, C.; Bloemhoff, W.; Kerling, K. E. T.; van Boom, J. H. Recl. Trav. Chim. Pays-Bas 1985, 104, 54–59.
- 6. Andrews, D. M.; Seale, P. W. Int. J. Peptide Protein Res. 1993, 42, 165-170.
- 7. Erbing, B.; Lindberg, B.; Norberg, T. Acta Chem. Scand. 1978, B32, 308-310.
- 8. Reimer, K. B.; Meldal, M.; Kusumoto, S.; Fukase, K.; Bock, K. J. Chem. Soc., Perkin Trans. 1 1993, 925-932.
- 9. Sjölin, P.; Elofsson, M.; Kihlberg, J. J. Org. Chem. 1996, 61, 560-565.
- Sjölin, P.; George, S. K.; Bergquist, K. E.; Roy, S.; Svensson, A.; Kihlberg, J. J. Chem. Soc., Perkin Trans. 1 1999, 1731–1742.
- 11. Seebach, D. Aldrichim. Acta 1992, 25, 59-66.
- Kihlberg, J.; Åhman, J.; Walse, B.; Drakenberg, T.; Nilsson, A.; Söderberg-Ahlm, C.; Bengtsson, B.; Olsson, H. J. Med. Chem. 1995, 38, 161–169.
- Compound 7: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>), rotamers (~2:1), δ (ppm): 5.37–5.42 (m, 2H, H-4,4'), 5.21 (dd, 1H, J=7.9, 10.5 Hz, H-2'), 5.14 (dd, 1H, J=8.0, 10.5 Hz, H-2), 4.58 (d, 1H, J=7.9 Hz, H-1), 4.27 (d, 1H, J=8.0 Hz, H-1'), 3.05 (s, 1H, Me), 2.99 (s, 1H, Me'); FABMS: (M+Na)<sup>+</sup> 860 calcd, 860 obsd.
- 14. Szabo, L.; Li, Y. S.; Polt, R. Tetrahedron Lett. 1991, 32, 585-588.
- 15. Glycopeptide 8: yield 97%; <sup>1</sup>H NMR (400 MHz, Acetone-*d*<sub>6</sub>), δ (ppm): Ala 4.21 (m, 1H, H-α), 1.32 (d, 3H, *J*=7.2 Hz, Me); Ser 4.36 (m, 1H, H-α), 3.84 (dd, 1H, *J*=7.3, 10.7 Hz, H-β), 3.76 (dd, 1H, *J*=4.8, 10.7 Hz, H-β'); Phe 4.51 (m, 1H, H-α), 3.26 (dd, 1H, *J*=4.4, 14.0 Hz, H-β), 2.99 (dd, 1H, *J*=9.8, 13.9 Hz, H-β'); Gal 4.74 (d, 1H, *J*=7.6 Hz, H-1); FABMS: (M+H)<sup>+</sup> 695 calcd, 695 obsd. Glycopeptide 9: yield 86%; <sup>1</sup>H NMR (400 MHz, Acetone-*d*<sub>6</sub>), major rotamer, δ (ppm): Ala 4.82 (m, 1H, H-α), 1.31 (d, 3H, *J*=6.9 Hz, Me); Ser 5.16 (dd, 1H, *J*=4.7, 9.4 Hz, H-α), 3.9–4.0 (m, 2H, H-β,β'); Phe 4.54 (ddd, 1H, *J*=3.8, 8.7, 11.2 Hz, H-α), 3.28 (dd, 1H, *J*=3.7, 14.0 Hz, H-β), 2.92 (dd, 1H, *J*=11.3, 13.9 Hz, H-β'); Gal 4.75 (d, 1H, *J*=7.9 Hz, H-1); minor rotamer, δ (ppm): Ala 1.19 (d, 3H, *J*=6.8 Hz, Me); Phe 4.62 (m, 1H, H-α), 3.20 (dd, 1H, *J*=5.1, 14.1 Hz, H-β), 2.95 (m, 1H, H-β'); Gal 4.72 (d, 1H, *J*=7.6 Hz, H-1); FABMS: (M+H)<sup>+</sup> 709 calcd, 709 obsd. Glycopeptide 10: yield 39%; <sup>1</sup>H NMR (400 MHz, Acetone-*d*<sub>6</sub>), notamers (~1:1), δ (ppm): Ala 4.38 (t, 1H, *J*=7.2 Hz, H-α), 4.31 (t, 1H, *J*=7.2 Hz, H-α); Ser 4.5–4.6 (m, 1H, H-α); Phe 5.20 (dd, 1H, *J*=6.5, 9.0 Hz, H-α); Gal 4.80 (d, 1H, *J*=7.9 Hz, H-1), 4.42 (d, 1H, *J*=7.9 Hz, H-1); FABMS: (M+H)<sup>+</sup> 709 calcd, 709 obsd.
- 16. Rink, H. Tetrahedron Lett. 1987, 28, 3787-3790.
- 17. Bernatowicz, M. S.; Daniels, S. B.; Köster, H. Tetrahedron Lett. 1989, 30, 4645-4648.

- 18. Glycopeptide 11: <sup>1</sup>H NMR (400 MHz, MeOH-*d*<sub>4</sub>), δ (ppm): Ala 4.25–4.35 (m, 1H, H-α), 1.28 (d, 3H, *J*=7.2 Hz, Me); Ser 4.54 (t, 1H, *J*=5.4 Hz, H-α), 4.09 (dd, 1H, *J*=5.1, 10.4 Hz, H-β), 3.7–3.8 (m, 1H, H-β); Phe 4.57 (m, 1H, H-α), 3.21 (dd, 1H, *J*=4.9, 14.1 Hz, H-β), 2.97 (dd, 1H, *J*=9.1, 14.0 Hz, H-β); Gal 4.27 (d, 1H, *J*=7.2 Hz, H-1); FABMS: (M+H)<sup>+</sup> 527 calcd, 527 obsd. Glycopeptide 12: <sup>1</sup>H NMR (400 MHz, MeOH-*d*<sub>4</sub>), rotamers (~1:1), δ (ppm): Ala 4.8–4.9 (m, 1H, H-α), 4.70 (q, 1H, *J*=7.0 Hz, H-α), 1.36 (d, 3H, *J*=7.2 Hz, Me), 1.23 (d, 3H, *J*=7.0 Hz, Me); Ser 5.23 (dd, 1H, *J*=4.8, 9.3 Hz, H-α), 5.14 (t, 1H, *J*=6.7 Hz, H-α), 3.9–4.1 (m, 4H, H-β); Phe 4.50–4.65 (m, 2H, H-α), 3.2–3.3 (m, 2H, H-β), 2.9–3.0 (m, 2H, H-β); Gal 4.2–4.3 (m, 2H, H-1); FABMS: (M+Na)<sup>+</sup> 563 calcd, 563 obsd. Glycopeptide 13: <sup>1</sup>H NMR (400 MHz, MeOH-*d*<sub>4</sub>), rotamers (~3:2), δ (ppm): Ala 4.34 (q, 1H, *J*=7.1 Hz, H-α), 4.26 (q, 1H, *J*=7.2 Hz, H-α), 1.29 (d, 3H, *J*=7.2 Hz, Me), 1.22 (d, 3H, *J*=7.2 Hz, Me); Ser 5.04 (t, 1H, *J*=6.3 Hz, H-α), 4.63 (dd, 1H, *J*=4.8, 9.3 Hz, H-α), 3.98 (dd, 1H, *J*=5.9, 10.1 Hz, H-β), 3.75–3.85 (m, 1H, H-β), 3.3–3.4 (m, 1H, H-β), 2.30 (dd, 1H, *J*=4.0, 10.2 Hz, H-β); Phe 5.25 (dd, 1H, *J*=5.6, 10.3 Hz, H-α), 5.06 (dd, 1H, *J*=4.0, 10.0 Hz, H-α), 3.25–3.40 (m, 2H, H-β), 2.95–3.05 (m, 2H, H-β); Gal 4.24 (d, 1H, *J*=7.5 Hz, H-1), 3.92 (d, 1H, *J*=7.3 Hz, H-1); FABMS: (M+Na)<sup>+</sup> 563 calcd, 563 obsd.
- 19. Peptide 14: <sup>1</sup>H NMR (400 MHz, MeOH-*d*<sub>4</sub>), δ (ppm): Ala 4.30 (q, 1H, *J*=7.2 Hz, H-α), 1.34 (d, 3H, *J*=7.2 Hz, Me); ΔApa 5.76 (s, 1H, H-β), 5.40 (s, 1H, H-α); Phe 4.63 (m, 1H, H-β), 3.27 (dd, 1H, *J*=5.0, 14.0 Hz, H-β), 2.98 (dd, 1H, *J*=10.0, 14.0 Hz, H-β); FABMS: (M+H)<sup>+</sup> 347 calcd, 347 obsd. Peptide 15: <sup>1</sup>H NMR (400 MHz, MeOH-*d*<sub>4</sub>), δ (ppm): Ala 4.41 (m, 1H, H-α), 1.25 (d, 3H, Me); ΔApa 6.19 (s, 1H, H-β), 5.72 (s, 1H, H-β); Phe 4.61 (m, 1H, H-α), 3.3–3.4 (m, 1H, H-β), 3.05 (br t, 1H, *J*=12.4 Hz, H-β).